Extensions 1→N→G→Q→1 with N=C22 and Q=D4⋊S3

Direct product G=N×Q with N=C22 and Q=D4⋊S3
dρLabelID
C22×D4⋊S396C2^2xD4:S3192,1351

Semidirect products G=N:Q with N=C22 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C22⋊(D4⋊S3) = D4⋊S4φ: D4⋊S3/D4S3 ⊆ Aut C22246+C2^2:(D4:S3)192,974
C222(D4⋊S3) = C3⋊C822D4φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C2296C2^2:2(D4:S3)192,597
C223(D4⋊S3) = D1216D4φ: D4⋊S3/D12C2 ⊆ Aut C2248C2^2:3(D4:S3)192,595
C224(D4⋊S3) = (C2×C6)⋊8D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C2248C2^2:4(D4:S3)192,776

Non-split extensions G=N.Q with N=C22 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(D4⋊S3) = Q16.D6φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C22964C2^2.1(D4:S3)192,753
C22.2(D4⋊S3) = (C6×D4)⋊C4φ: D4⋊S3/D12C2 ⊆ Aut C2248C2^2.2(D4:S3)192,96
C22.3(D4⋊S3) = D82Dic3φ: D4⋊S3/D12C2 ⊆ Aut C22484C2^2.3(D4:S3)192,125
C22.4(D4⋊S3) = (C2×C6).D8φ: D4⋊S3/D12C2 ⊆ Aut C2296C2^2.4(D4:S3)192,592
C22.5(D4⋊S3) = Q16⋊D6φ: D4⋊S3/D12C2 ⊆ Aut C22484+C2^2.5(D4:S3)192,752
C22.6(D4⋊S3) = D8.9D6φ: D4⋊S3/D12C2 ⊆ Aut C22964-C2^2.6(D4:S3)192,754
C22.7(D4⋊S3) = C6.C4≀C2φ: D4⋊S3/C3×D4C2 ⊆ Aut C2248C2^2.7(D4:S3)192,10
C22.8(D4⋊S3) = D248C4φ: D4⋊S3/C3×D4C2 ⊆ Aut C22484C2^2.8(D4:S3)192,47
C22.9(D4⋊S3) = (C2×C6).40D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C2296C2^2.9(D4:S3)192,526
C22.10(D4⋊S3) = D8.D6φ: D4⋊S3/C3×D4C2 ⊆ Aut C22484C2^2.10(D4:S3)192,706
C22.11(D4⋊S3) = C24.27C23φ: D4⋊S3/C3×D4C2 ⊆ Aut C22964C2^2.11(D4:S3)192,738
C22.12(D4⋊S3) = C6.6D16central extension (φ=1)192C2^2.12(D4:S3)192,48
C22.13(D4⋊S3) = C6.SD32central extension (φ=1)192C2^2.13(D4:S3)192,49
C22.14(D4⋊S3) = C6.D16central extension (φ=1)96C2^2.14(D4:S3)192,50
C22.15(D4⋊S3) = C6.Q32central extension (φ=1)192C2^2.15(D4:S3)192,51
C22.16(D4⋊S3) = C12.C42central extension (φ=1)192C2^2.16(D4:S3)192,88
C22.17(D4⋊S3) = D81Dic3central extension (φ=1)96C2^2.17(D4:S3)192,121
C22.18(D4⋊S3) = C6.5Q32central extension (φ=1)192C2^2.18(D4:S3)192,123
C22.19(D4⋊S3) = C2×C6.Q16central extension (φ=1)192C2^2.19(D4:S3)192,521
C22.20(D4⋊S3) = C2×C6.D8central extension (φ=1)96C2^2.20(D4:S3)192,524
C22.21(D4⋊S3) = C2×C3⋊D16central extension (φ=1)96C2^2.21(D4:S3)192,705
C22.22(D4⋊S3) = C2×D8.S3central extension (φ=1)96C2^2.22(D4:S3)192,707
C22.23(D4⋊S3) = C2×C8.6D6central extension (φ=1)96C2^2.23(D4:S3)192,737
C22.24(D4⋊S3) = C2×C3⋊Q32central extension (φ=1)192C2^2.24(D4:S3)192,739
C22.25(D4⋊S3) = C2×D4⋊Dic3central extension (φ=1)96C2^2.25(D4:S3)192,773

׿
×
𝔽