extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(D4⋊S3) = Q16.D6 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.1(D4:S3) | 192,753 |
C22.2(D4⋊S3) = (C6×D4)⋊C4 | φ: D4⋊S3/D12 → C2 ⊆ Aut C22 | 48 | | C2^2.2(D4:S3) | 192,96 |
C22.3(D4⋊S3) = D8⋊2Dic3 | φ: D4⋊S3/D12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.3(D4:S3) | 192,125 |
C22.4(D4⋊S3) = (C2×C6).D8 | φ: D4⋊S3/D12 → C2 ⊆ Aut C22 | 96 | | C2^2.4(D4:S3) | 192,592 |
C22.5(D4⋊S3) = Q16⋊D6 | φ: D4⋊S3/D12 → C2 ⊆ Aut C22 | 48 | 4+ | C2^2.5(D4:S3) | 192,752 |
C22.6(D4⋊S3) = D8.9D6 | φ: D4⋊S3/D12 → C2 ⊆ Aut C22 | 96 | 4- | C2^2.6(D4:S3) | 192,754 |
C22.7(D4⋊S3) = C6.C4≀C2 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C22 | 48 | | C2^2.7(D4:S3) | 192,10 |
C22.8(D4⋊S3) = D24⋊8C4 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.8(D4:S3) | 192,47 |
C22.9(D4⋊S3) = (C2×C6).40D8 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C22 | 96 | | C2^2.9(D4:S3) | 192,526 |
C22.10(D4⋊S3) = D8.D6 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.10(D4:S3) | 192,706 |
C22.11(D4⋊S3) = C24.27C23 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.11(D4:S3) | 192,738 |
C22.12(D4⋊S3) = C6.6D16 | central extension (φ=1) | 192 | | C2^2.12(D4:S3) | 192,48 |
C22.13(D4⋊S3) = C6.SD32 | central extension (φ=1) | 192 | | C2^2.13(D4:S3) | 192,49 |
C22.14(D4⋊S3) = C6.D16 | central extension (φ=1) | 96 | | C2^2.14(D4:S3) | 192,50 |
C22.15(D4⋊S3) = C6.Q32 | central extension (φ=1) | 192 | | C2^2.15(D4:S3) | 192,51 |
C22.16(D4⋊S3) = C12.C42 | central extension (φ=1) | 192 | | C2^2.16(D4:S3) | 192,88 |
C22.17(D4⋊S3) = D8⋊1Dic3 | central extension (φ=1) | 96 | | C2^2.17(D4:S3) | 192,121 |
C22.18(D4⋊S3) = C6.5Q32 | central extension (φ=1) | 192 | | C2^2.18(D4:S3) | 192,123 |
C22.19(D4⋊S3) = C2×C6.Q16 | central extension (φ=1) | 192 | | C2^2.19(D4:S3) | 192,521 |
C22.20(D4⋊S3) = C2×C6.D8 | central extension (φ=1) | 96 | | C2^2.20(D4:S3) | 192,524 |
C22.21(D4⋊S3) = C2×C3⋊D16 | central extension (φ=1) | 96 | | C2^2.21(D4:S3) | 192,705 |
C22.22(D4⋊S3) = C2×D8.S3 | central extension (φ=1) | 96 | | C2^2.22(D4:S3) | 192,707 |
C22.23(D4⋊S3) = C2×C8.6D6 | central extension (φ=1) | 96 | | C2^2.23(D4:S3) | 192,737 |
C22.24(D4⋊S3) = C2×C3⋊Q32 | central extension (φ=1) | 192 | | C2^2.24(D4:S3) | 192,739 |
C22.25(D4⋊S3) = C2×D4⋊Dic3 | central extension (φ=1) | 96 | | C2^2.25(D4:S3) | 192,773 |